Meta-analytic Evidence for Ambivalence Resolution as a Key Process in Effortless Self-control

Iris K. Schneider
University of Cologne

Marleen Gillebaart
Utrecht University

André Mattes
University of Cologne

Word count (main text): 4692

Accepted for publication, please cite as:

Author note

Iris K. Schneider, Department of Psychology and Center of Social and Economic Behavior, University of Cologne, Richard-Strauss-Str. 2, 50931, Cologne, Germany. Email: i.k.schneider@uni-koeln.de

Marleen Gillebaart, Social, Health, and Organisational Psychology, Utrecht University, Heidelberglaan 1, 3584CS Utrecht, The Netherlands. Email: M.Gillebaart@uu.nl.

André Mattes, Department of Psychology, University of Cologne. Email: andre.mattes@uni-koeln.de

Corresponding author: Iris K Schneider
Acknowledgements

We gracefully acknowledge Celine Frank, Jacqueline Bachmann, Lina-Sophia Falkenberg, Jana Hohnsbehn, Julia Stapels, Niclas O’Donnokoé, and Hanna Kühlkamp for their assistance in data collection. We also thank the Social and Economic Cognition lab group, two anonymous reviewers, and the editor, Anthony Evans, for their constructive comments.
Funding

Part of this work was supported a Junior Start-Up Grant [“Ambivalence towards Healthy and Unhealthy Foods: Situational Influences and Moderation by Self-Control”] awarded to the first author by the Center of Social and Economic Behavior; University of Cologne, Cologne, Germany
Abstract

Self-control is a central construct in understanding human behavior and wellbeing, and has a significant impact on outcomes in several areas such as health, wellbeing, academic performance, and interpersonal relationships. However, underlying mechanisms of self-control, and particularly effortless self-control, remain underexposed. Recent work using mouse tracking techniques has shed new light on these issues and found that self-control is related to ambivalence associated with self-control dilemma’s, both in magnitude and resolution. Using a meta-analytical approach, the current research examines whether these initial findings, suggesting that the resolution of ambivalent conflicts is a key ingredient of effortless self-control, are robust. Combining two studies from Gillebaart, Schneider, & De Ridder (2016), and five novel studies, we examined whether self-control influenced the magnitude of ambivalence conflicts (magnitude hypothesis) and the process of its resolution (process hypothesis). Self-reports of objective and subjective ambivalence conflicts were combined with a mouse tracking paradigm to tap into these different aspects. Our analyses replicate previous findings and showed a robust small to medium large effect: Higher self-control was associated with less self-reported conflict, faster conflict resolution, and earlier moment of maximum conflict. Notably, on an implicit level, conflicts emerged in equal in size regardless of self-control level. Extending previous work, self-control did not only play a role in food-related dilemmas but also in resolving conflict with regards to different societal topics. These results support the notion of ambivalent conflict resolution as an underlying mechanism of effortless self-control and contribute to a new perspective of self-control going beyond effort and inhibition.

Keywords: Self-control; Ambivalence; Conflict; Self-Regulation; Dilemmas, Mouse Tracking
Self-control is a central construct in understanding human behavior and wellbeing. It is the ability to override undesired impulses and initiate desired behavior in the face of temptations. Self-control helps people strive for, and achieve their long-term goals when conflicts between these long-term goals and short-term, often hedonic goals arise (De Ridder, Lensvelt-Mulders, Finkenauer, Stok, & Baumeister, 2012; Fujita, 2011; Gillebaart, Schneider, & De Ridder, 2016). It is the force that helps people resist watching another episode of Game of Thrones after having watched five already, or leave behind a warm bed to get up and start the day. Beyond such examples, higher self-control has been related to better quality outcomes in domains as diverse as health (Moffitt et al., 2011), wellbeing (Cheung, Gillebaart, Kroese, & De Ridder, 2014; Hofmann, Luhmann, Fisher, Vohs, & Baumeister, 2014), economic decision-making (Baumeister, 2002), and interpersonal relationships (Tangney, Baumeister, & Boone, 2004). Reflecting this centrality, research on self-control is at the core of many domains in science, such as psychology, economics, and health and wellbeing.

Despite the widespread attention given to self-control across disciplines, relatively little is known about how self-control works. Traditionally, work on self-control has focused mainly on the inhibitory component of self-control (e.g., Hofmann, Friese, & Strack, 2009; Metcalfe & Mischel, 1999; Muraven & Baumeister, 2000). From this view, in the example above, the key aspect would be that the individual is able to inhibit the desire to watch more TV. The theoretical approaches emphasizing the inhibitory component of self-control in general assume that exerting self-control takes effort, and therefore makes individuals prone to failure due to fatigue or depletion in subsequent self-control efforts (Baumeister & Heatherton, 1996; Muraven & Baumeister, 2000). Although this approach has yielded a large body of research examining under what conditions self-control fails, it is relatively silent on which mechanisms support successful self-control.
Successful Self-control

Addressing this gap in self-control research, scholars have begun to turn their attention to the components underlying successful self-control. One of the most central insights from this new approach came from a meta-analysis on self-control, which showed that people high in self-control actually do not exert too much effortful self-control to begin with (De Ridder et al., 2012). Strikingly, in contrast to what research focusing on inhibition and self-control failure so far suggested, there seemed to be such a thing as effortless self-control (Gillebaart & De Ridder, 2015). Specifically, research has identified the role of habits (Adriaanse, Kroese, Gillebaart, & De Ridder, 2014; Galla & Duckworth, 2015), and the early regulation and resolution of ambivalent response conflict (i.e., competing behavioral tendencies) as essential components of effortless self-control. This insight has led to a new perspective on self-control that incorporates the idea that successful self-control relies in part on successfully resolving self-control conflicts, for instance the dilemma between wanting to watch both more and less TV (Fujita, 2011; De Ridder, Kroese, & Gillebaart, 2018; Gillebaart, Schneider, & De Ridder, 2016; Gillebaart, 2018). Whereas the resolution of self-control conflicts is important for both effortful and effortless self-control, adaptive conflict resolution (e.g., smaller experienced conflicts, or faster resolution) may be especially important for effortless pathways to self-control success. Providing support for this, recent work has indeed shown that the magnitude of conflicts, and the process of conflict resolution can be considered core components of effortless self-control (Gillebaart et al., 2016). In this paper we set out to replicate this finding, using a meta-analytical approach.

Self-Control and Conflict Resolution

Many self-control dilemmas constitute a conflict between the positive and negative aspects of a certain behavior. For instance, in the example above, continuous TV watching is positive because it is relaxing and gratifying, while negative because this time could also be
used to make progress towards long-term goals (e.g., studying, learning healthy recipes), leading people to feel conflicted about such behaviors. Although intuitively, self-control is often conceptualized as deciding between two different options, such as a cookie and an apple, real-life self-control dilemmas are actually quite often experienced towards a single topic or behavior, for instance having a piece of cake, or not having that piece of cake. Ambivalent conflict arises because these temptations often at the same time activate both short term gratification, accompanied by positive evaluations, as well as the long term goals against which the temptation works, which results in negative feelings (Fischbach, Friedman, & Kurglanski, 2003). As such, many temptations are a source of such intrapersonal evaluative conflict, or ambivalence, towards a single stimulus (van Harreveld, Nohlen, & Schneider, 2015b), for which self-control is necessary.

Indeed, many of the topics that are at the core of self-control research, such as smoking, exercise, unhealthy food, and alcohol have all been shown to elicit ambivalence (Conner & Sparks, 2002; Prochaska & Velicer, 1997; Schneider & Schwarz, 2017; Schneider et al., 2015; Schneider et al., 2013; Sherman, Rose, Koch, Presson, & Chassin, 2003; Sparks, Conner, James, Sheperd, & Povey, 2001; van Harreveld, Nohlen, & Schneider, 2015a; van Harreveld et al., 2015b). The resolution of such ambivalent conflicts is central to effortless self-control, and eventually, self-control success.

Effortless self-control can potentially work through two conflict resolution mechanisms. First, people high in self-control may simply experience less ambivalent conflict in response to self-control dilemmas. This is the magnitude hypothesis: higher self-control is related to the experience of less conflict. Second, people high in self-control may be faster to resolve conflict when it does emerge, the process hypothesis. A recent paper (Gillebaart et al., 2016) found first evidence for these hypotheses. People higher in self-control reported less ambivalence towards different healthy and unhealthy food items,
providing support for the magnitude hypothesis. To further examine the magnitude and process hypotheses, the authors used mouse tracking techniques that allow for a temporal examination of the evolution of conflict resolution in real time. In line with the process hypothesis, higher self-control was related to faster resolution of participants’ ambivalence towards healthy and unhealthy foods. Interestingly, the magnitude hypothesis was not supported on this implicit level, with conflicts emerging equal in size for different levels of self-control. These findings lay the first stones in the empirical foundation of the notion of effortless self-control by alluding to the resolution of conflict as a mechanism for successful self-control.

In order to assure robustness of these findings and the subsequent conclusions that are drawn, here we aim to replicate these findings. Thus, although these results provide support for a novel perspective on self-control success, additional data is necessary to examine their robustness and get a more precise estimate of the effect size. Furthermore, going beyond food related dilemmas, we examine whether self-control can support conflict resolution in other domains.

Method

We report meta-analyses of seven studies on the relationship between self-control and ambivalent conflict resolution that have been conducted in our research team. This approach shifts the focus away from p-values of individual studies, towards the overall effect size across all studies and allows for small effects to be detected that might not be found in individual studies. Overall, this approach allows us to draw more reliable conclusions than we could draw on the basis of individual studies. For all studies, all measures, manipulations, and exclusions are reported when applicable. Materials, data, and analyses scripts can be found here: http://osf.io/tsg4f/.
Sample. A total of 995 individuals (685 females, 302 males, 8 other/not indicated) participated in seven studies. Their mean age was 24.36 (SD = 7.12). Sample size was determined by the number of participants in the included studies. It was not increased after preliminary data analyses. For a description of the sample and materials of each individual study, see Table 1. Details for the two studies from Gillebaart et al. (2016) can be found in that paper, while details from unpublished studies are reported in the Supplemental Materials (Appendix A).

Self-control. Self-control was measured by the Brief Self-Control Scale (Tangney et al., 2004) in the original English, German (Bertrams & Dickhäuser, 2009) and Dutch (translated by the research team). The self-control scale consists of 13 statements relating to different self-control aspects. An example item is: ‘People would say that I have iron self-discipline’, answered on a scale from 1 (not at all typically like me) to 5 (very much typically like me). Of the 13 items, 9 are reverse coded. An average score between 1 (low) and 5 (high) indicates level of self-control.

Ambivalence measures. Ambivalence was assessed in two different ways. First, we measured the structural conflict between positive and negative evaluations, often referred to as objective ambivalence. Participants were asked to indicate for each stimulus how positive [negative] they thought each stimulus was on two separate unipolar scales ranging from not at all positive [negative] to very positive [negative] (for range of each scale, see Table 1). Objective ambivalence was then computed according to the following equation: [(P + N) / 2] - | P - N | (Thompson, Zanna, & Griffin, 1995), where P and N refer to the positive and negative evaluation, respectively.

We also assessed participants experience of conflict using a measure of subjective ambivalence. In each study, we presented participants with an adjusted version of the subjective ambivalence scale (Priester & Petty, 1996). This scale consists of 3 items that
assess how conflicted, mixed, and indecisive participants are, resulting in an average subjective ambivalence score. In some studies, we opted to only use a subset of these items (see Table 1 for an overview of which item was used in each study).

Mouse tracking. In five of seven studies, we used mouse tracking to examine the temporal dynamics of ambivalent conflict resolution with a paradigm successfully used in previous studies. Below we describe the general procedure, which was the same for each study. At the beginning of each trial, participants clicked “start” at the lower center of the computer screen. Subsequently, they were presented with a stimulus and asked to evaluate the stimulus as “positive” or “negative”. Response buttons for each option were displayed in the upper left or right corner of the screen. Participants could indicate their response by clicking on each one of these buttons.

On each trial, the x and y coordinates of the mouse trajectory was recorded with a sampling rate of approximately 70 Hz. For all studies, the recording of the trajectory and the computation of the mouse tracking parameters were done in the MouseTracker software package (Freeman & Ambady, 2010). Degree of conflict was assessed by calculating the
Table 1 Overview of the studies included in the meta-analyses.

<table>
<thead>
<tr>
<th>Study Information</th>
<th>Design and Material</th>
<th>Stimuli</th>
<th>Objective ambivalence¹</th>
<th>Measures</th>
<th>Mouse-tracking²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study A</td>
<td>2 levels (valence: ambivalent vs. univalent) within-subjects</td>
<td>topics</td>
<td>10-point scale</td>
<td>10-point scale, 1 = “completely one-sided reactions”, 10 = “completely mixed reactions”, item: mixed</td>
<td>MD, MD time, RT</td>
</tr>
<tr>
<td>Study A</td>
<td>2 levels (type of food: healthy vs. unhealthy) within-subjects</td>
<td>food</td>
<td>4-point scale</td>
<td>5-point scale, 1 = “not at all conflicted”, 5 = “very much conflicted”, item: conflicted</td>
<td>MD, MD time, RT</td>
</tr>
<tr>
<td>Study B</td>
<td>2 (valence: ambivalent vs. univalent) x 2 (presentation mode: picture vs. word) within-subjects</td>
<td>food</td>
<td>10-point scale</td>
<td>10-point scale, 1 = “no conflicting thoughts and feelings at all”, 10 = “maximally conflicting thoughts and feelings”, item: conflicted</td>
<td>MD, MD time, RT</td>
</tr>
<tr>
<td>Study C</td>
<td>2 (valence: ambivalent vs. univalent) x 2 (presentation mode: colored vs. black-and-white picture) within-subjects</td>
<td>food</td>
<td>10-point scale</td>
<td>10-point scale, 1 = “no conflicting thoughts and feelings at all”, 10 = “maximally conflicting thoughts and feelings”, item: conflicted</td>
<td>MD, MD time, RT</td>
</tr>
<tr>
<td>Study E</td>
<td>2 levels (valence: ambivalent vs. univalent) within-subjects</td>
<td>topics</td>
<td>10-point scale</td>
<td>10-point scale, 1 = “do not agree at all”, 10 = “completely agree”, item: conflicted</td>
<td>MD, MD time, RT</td>
</tr>
<tr>
<td>Study F</td>
<td>2 levels (type of food: healthy vs. unhealthy) within-subjects</td>
<td>food</td>
<td>4-point scale</td>
<td>5-point scale, 1 = “not at all”, 10 = “maximally”, items: conflicted, mixed, indecisive</td>
<td>-</td>
</tr>
<tr>
<td>Study G</td>
<td>2 levels (valence: ambivalent vs. univalent) within-subjects</td>
<td>topics</td>
<td>10-point scale</td>
<td>10-point scale, 1 = “do not agree at all”, 10 = “completely agree”, items: conflicted, mixed, indecisive</td>
<td>-</td>
</tr>
</tbody>
</table>

¹The scale ends were labelled “not at all positive/negative” and “very positive/negative” in all studies.
²MD: Maximum Deviation; MD time: Maximum Deviation Time; RT: Response Time
deviation of the trial’s trajectory from a straight line to the chosen response option, also known as Maximum Deviation (MD). Additionally, we assessed Maximum Deviation Time (MD Time), which is the temporal point at which the conflict (MD) is the largest, before subsiding again. We also recorded response times (see also Table 1).

Meta-analyses. The meta-analyses were conducted in the statistical software R (R Core Team, 2013) using a random effects model with restricted maximum likelihood estimation implemented in the metafor package (Viechtbauer, 2010). In a first step, we computed the correlations between self-control and the ambivalence measures for each study. The ambivalence measures were collapsed across experimental conditions within each study since we were only interested in the relationship between self-control and the overall level of the ambivalence measures between participants. Moreover, earlier studies did not find a difference in the strength of the relationship between self-control and ambivalence measures between ambivalent/unhealthy and univalent/healthy stimuli (e.g. Gillebaart et al., 2016). Next, we applied the inverse-variance method to weigh and aggregate the Fisher-z-transformed correlation coefficients across individual studies. Finally, we transformed the aggregated effect size and the corresponding limits of the confidence interval back to r to facilitate interpretation.

For exploratory purposes, we also conducted moderator analyses to investigate whether the type of stimuli (food items vs. topics) had an influence on the magnitude of the effect size. For this we dummy coded the stimulus type factor (0 = food items, 1 = topics) and performed a meta-regression as implemented in the metafor package (Viechtbauer, 2010).

Results

Before submitting the data to the meta-analyses, we excluded trials that were faster than 300ms. Next, we excluded trials that were three standard deviations above or below the participant’s mean RT. This step of the outlier exclusion was performed separately for each
participant because we were ultimately interested in the correlation between self-control and ambivalence, which is computed on the participants’ level. In total, across all studies, 1.18% of trials (206 out of 17,528) were excluded from analyses. While the meta-analyses were performed on Fisher-z-transformed correlations, here, we report the correlations transformed back to \(r \) for the sake of interpretation. The same applies to the confidence intervals.

Magnitude hypothesis. The analyses revealed a negative correlation between self-control and ratings of objective ambivalence, \(r = -0.14, z = -2.90, p = 0.004, \) 95% CI [−0.24, −0.05], and self-control and ratings of subjective ambivalence, \(r = -0.18, z = -4.50, p < 0.001, \) 95% CI [−0.25, −0.10]. Higher levels of self-control were associated with lower ambivalence (see Figure 1). This constitutes a replication of the findings reported in Gillebaart et al., (2016) and support for the magnitude hypothesis that states that higher self-control is related to less conflict. The correlation between self-control and Maximum Deviation was not significant, \(r = 0.04, z = 0.64, p = 0.524, \) 95% CI [−0.09, 0.17] (see Figure 1).
Figure 1. Relation between self-control and objective ambivalence, subjective ambivalence, and maximum deviation. The squares represent the effect sizes of the individual studies with their respective 95% confidence intervals. The size of the square indicates the weight with which the effect size enters the overall effect size. The diamonds represent the overall effect size across all studies, and across studies using food and topic stimuli respectively. The width of the diamonds represents the 95% confidence interval.
Process hypothesis. The analyses showed a negative correlation between self-control and response time, \(r = -0.11, z = -2.88, p = 0.004, 95\% CI [-0.19, -0.04] \) (see Figure 2), which means that the higher participants were in self-control, the faster they resolved their ambivalence. This confirms earlier findings (Gillebaart et al., 2016) and supports the process hypotheses. Notably, also as found in previous studies, there was a negative correlation between self-control and maximum deviation time, \(r = -0.10, z = -2.28, p = 0.022, 95\% CI [-0.18, -0.01] \), which means that the higher participants were in self-control, the earlier they reached the point of maximum deviation after which conflict subsided, suggesting a more efficient resolution of conflict (see Figure 2).

Figure 2. Relation between self-control and maximum deviation time, and response time. The squares represent the effect sizes of the individual studies with their respective 95% confidence intervals. The size of the square indicates the weight with which the effect size enters the overall effect size. The diamonds represent the overall effect size across all studies, and across studies using food and topic stimuli respectively. The width of the diamonds represents the 95% confidence interval.
Moderator analyses

As Figure 1 shows, the correlation between self-control and maximum deviation differed across the individual studies. For Studies A and E (which featured topics as stimuli), the correlation was negative, for the other studies (which featured food items as stimuli), it was positive. This hints at heterogeneity in the effect sizes (i.e., the correlation coefficients). Indeed, the Q-test for heterogeneity (Hedges & Olkin, 1985) revealed significant differences between the individual correlation coefficients, $Q(df = 4) = 10.94, p = .027$, suggesting that the variance of effect sizes cannot solely be accounted for by sampling error and thus pointing at the existence of moderators. To examine this, we conducted a moderator analysis to see whether there was a systematic difference between the different studies and we tested whether the stimulus type (food stimuli vs. topic stimuli) could account for (part of) the variance in the correlation coefficients for the correlation between self-control and maximum deviation. Indeed, we found that for topics, the correlation coefficient ($r = -.09, 95\% \text{ CI } [-.19, .01]$) was significantly smaller than for food items ($r = .15, 95\% \text{ CI } [.03, .25]$), $\beta = 0.24, z = 3.08, p = .002$. This indicates that for foods, the higher participants were in self-control, the larger the maximum deviation they displayed, which was not in line with the magnitude hypothesis. Conversely for topics, the higher participants were in self-control, the smaller the maximum deviation they displayed. Note however, that for topic stimuli, the confidence interval around the correlation coefficient included zero, suggesting that is no statistically significant relationship.

Furthermore, the Q-test for heterogeneity also revealed a significant difference between the correlation coefficients between self-control and objective ambivalence, $Q(df = 6) = 13.83, p = .032$. The moderator analysis showed that the correlation for food items ($r = -.24, 95\% \text{ CI } [-.33, -.15]$) was significantly smaller than for topics ($r = -.03, 95\% \text{ CI } [-.12, .05]$), $\beta = 0.22, z = 3.33, p < .001$. This means that the higher participants were
in self-control, the lower their levels of objective ambivalence. This relationship was stronger for food stimuli than for topic stimuli. For topics, again, the confidence interval around the correlation coefficient included zero, which suggests that for this stimulus type, the relationship might not reach statistical significance. For all other measures the \(Q \)-test for heterogeneity did not show statistically significant results.

Exploratory Analyses

Independence of magnitude and process hypothesis. We repeated the main analyses using semi-partial correlations between self-control and the ambivalence measures. To this end, we controlled for the process measures (response time, maximum deviation time) when testing the magnitude hypothesis, and we controlled for the magnitude measures (objective ambivalence, subjective ambivalence, maximum deviation) when testing the process hypothesis (for a complete report of the analyses and results, see the Supplementary Material). This allowed us to examine whether two independent mechanisms are associated with self-control. Indeed, we found the same pattern of results as presented above when analyzing the semi-partial correlations, albeit with slightly smaller effect sizes. For maximum deviation time, the effect was marginal. However, the fact that the analyses yielded almost the same results for semi-partial correlations suggests that self-control is indeed associated with two independent mechanisms as described in the magnitude and process hypotheses.

Self-control subscales. To investigate whether the effects we found for self-control were driven by one of the subscales of the Brief Self-Control Scale (Maloney, Grawitch, & Barber, 2012), namely impulsivity and restraint, we repeated the analyses for these two facets of self-control. The pattern of results for the two facets was nearly identical to the pattern of results for self-control, indicating that the effects we found for self-control were not driven specifically by either the impulsivity subscale and the restraint subscale (for a complete report of the analyses and results, see the Supplementary Material).
General Discussion

Summary of results

The results of our meta-analytic analyses replicate the findings by Gillebaart et al. (2016) and demonstrate a robust small to medium effect size. Individuals with higher levels of self-control resolve conflicts faster than those with lower levels of self-control, potentially due to a more efficient resolution process indicated by an earlier peak of the conflict. As in the original findings, on an implicit level, conflicts do not differ in size as a function of self-control (although exploratory analyses suggest a moderating influence of stimulus type), but self-reports show that people with higher self-control experience less conflict. Taken together, the results demonstrate that the notion of conflict resolution as an underlying mechanism of self-control success seems to be a robust one.

Results furthermore demonstrate the importance of combining implicit and explicit measures when assessing ambivalence resolution as a self-control process. Specifically, when looking at the magnitude hypothesis, implicit and explicit measures diverge. This is in line with findings by Gillebaart et al. (2016), and supports the notion that whereas the explicit measure may gauge the outcome of the ambivalence resolution process, implicit measures may be better able to capture the ambivalence resolution process while it is occurring. As people with higher trait self-control tend to be faster to resolve ambivalence, their self-reported experience of this ambivalence may be smaller, whereas the size of conflict can be similar at the beginning of the process.

Our findings fall in line with recent developments in the field of self-control, by supporting a framework focusing on self-control success, its underlying processes, and the notion that these processes may be effortless rather than effortful (De Ridder, Kroese, & Gillebaart, 2018; Gillebaart & De Ridder, 2015). Moving away from the classic conceptualization of self-control as solely being effortful and focused on inhibition, studies
have shown that self-control is linked to automatic behaviors (Adriaanse et al., 2014; De Ridder et al., 2012; Galla & Duckworth, 2015), and have integrated initiatory in addition to inhibitory self-control behaviors (De Ridder et al., 2012). Moreover, effortless and situational strategies have been proposed as pathways to self-control success (Duckworth, Gendler, & Gross, 2016; Ent, Baumeister, & Tice, 2015).

Although advancing the field, these new angles on self-control have also sparked theoretical and terminological debate on what we mean when we talk about self-control. Recently, a suggestion was made to resolve this debate by operationally defining self-control as ‘…everything that one does to steer one’s behavior toward the desired end state’ (Gillebaart, 2018). This operational definition allows for distinguishing self-control from the broader concept of self-regulation (defined as the broader set of skills that allows for formulating and setting goals and standards), while at the same time allowing for novel notions of how self-control may work to be integrated. The process of resolving conflict is evidently of importance in self-control, as illustrated by the current findings, and indeed falls under the operational definition as something that constitutes a change or adjustment in behavior (defined broadly) that makes it more likely for someone to reach their long-term goal (i.e., desired end state).

Strengths and limitations

The current paper replicates earlier findings (Gillebaart et al., 2016) and shows that the association between self-control and ambivalent conflict resolution is small, but robust. The meta-analytic approach allowed for demonstrating this across studies and stimuli, going beyond single studies of which some were and some were not able to reach significance levels for these associations. The current paper adds not only to a growing body of work that supports a new way of thinking about self-control, but also connects self-control more directly to ambivalence, opening up new research questions in the latter. Indeed, the
examination of the relationship between ambivalence and self-control is an emerging field in research on self-control, mixed emotions, and attitudes, that has begun to attract attention over various domains (for instance Berrios, Totterdell, & Kellett, 2018).

The methodology of combining self-report measures of ambivalence and self-control with process tracking measures such as mouse tracking has shown that great tools can lead to theoretical advance. In this case, previous work using this methodology laid bare an interplay between self-reported ambivalent conflict, conflict activation, and resolution (Schneider et al., 2015; Gillebaart et al., 2016). The use of this methodology has shown that individual differences in self-control already exert influence at the conflict activation and resolution phase, potentially leading to downstream self-reported differences.

Another strength of the current research is the conceptualization and operationalization of self-control as a stable personality trait rather than a situational state. Although research has repeatedly shown that it is exactly this personality trait that predicts numerous outcomes in several domains such as health, wellbeing, interpersonal relationships, and academic performance (De Ridder et al., 2012; Duckworth & Seligman, 2005; Tangney et al., 2004), research into the underpinnings of self-control is often focused on state self-control, a situationally induced, highly malleable form of self-control. By studying self-control in its naturally occurring form, we are able to draw conclusions that have more potential in terms of predictive power, and ecological validity.

We also acknowledge some limitations with regards to the current work. One limitation of the current work is that we examine correlations, and thus cannot make strong claims about causality. However, the nature of the concepts that we examine does hint at what a possible causal direction could be. Specifically, because in our studies we examined self-control as an individual difference, we assume this construct to be rather stable. Ambivalence on the other hand, was elicited in the moment, by the stimuli presented to
participants. As such, it makes sense to assume an influence of the more stable construct over the manipulated construct. That is, it is likely that self-control exerted an influence on ambivalence and its resolution, rather than the other way around. Nevertheless, these data cannot support any conclusive claims about the causal direction.

Future Directions

The current work supports previous work that showed the relationship between self-control and the resolution of conflict. It seems likely that this process of conflict resolution functions as a mediator for the effect of self-control on outcomes established in the literature, such as Body Mass Index (Duckworth, Tsukayama, & Geier, 2010) and eating behavior (Adriaanse et al., 2014). However, the current work did not include any behavioral measure of self-control success. An intriguing avenue for future research is to understand whether and how process tracking measures relate to these real life outcomes. For instance, measuring spontaneous conflict towards different foods might be related to weight loss or adherence to exercise programs over time. This approach may also be used in measuring the effect of self-control training intervention to assess at what level such intervention exerts its influence. Furthermore, an important question remaining pertains to the automaticity of the conflict resolution. For instance, does the temporal conflict resolution change with the strength of different habits? Combining habit learning and mouse tracking measures can give insight into the what makes self-control more or less effortless.

A new perspective on self-control, building on a broader operational definition, allows for including novel developments in the field that show that automatic processes (e.g., habits) and ambivalence resolution, as well as situational strategies, all play a role in self-control success. Additionally, it creates potential for new empirical questions that will elucidate the underlying mechanisms of this seminal human trait that we call self-control. By meta-analytically supporting first studies into the resolution of ambivalent conflicts as a
function of self-control level, the results contribute to this new frontier of self-control research.
References

Sparks, P., Conner, M., James, R., Shepherd, R., & Povey, R. (2001). Ambivalence about health-related behaviours: An exploration in the domain of food choice. *British Journal of Health Psychology, 6*(1), 53-68. DOI: 10.1348/135910701169052

APPENDIX A: SUPPLEMENTAL MATERIALS - STUDY DESCRIPTIONS

Below we provide the methodological details for each unpublished study. The methods of Study A are currently described in a paper under review, but are added verbatim to this document for reviewing purposes because the original manuscript is not yet available. Study B and F are described in Gillebaart, Schneider, & de Ridder (2016).

[STUDY A] Schneider & Mattes, submitted

Participants and Design. A total of 252 participants took part in the study. Five participants were excluded from the analyses because they had already participated in the study, did not understand the instructions, knew about the hypothesis or encountered technical difficulties. The final sample consisted of 247 students (193 females, 53 males, and 1 other; Mage = 22.32, SDage = 5.08) participated for course credit or monetary reward. The experiment followed a one-factor (valence: ambivalent vs. univalent) within-subjects design with maximum deviation (MD) as main dependent variable. In the same session, we also collected data on participants’ individual levels of self-control for an unrelated project reported elsewhere (Schneider, Gillebaart, and Mattes, 2019), and they are not analyzed here.

Attitude objects. We used 24 attitude objects that have successfully been used in prior research to induce ambivalence, neutrality, and univalence (Berger, Hütter, & Corneille, 2019). The ambivalent topics were: career, regulation, doctors visit, protest, alcohol, fire, smartphone, and pride. The univalent topics were: hope, health, peace, protection, sunshine, jail, cemetery, dispute, and failure. Word length and frequency were matched per condition (Berger, Hütter, & Corneille, 2019).

Evaluation task. The evaluation task was the same as in Schneider et al., 2015. At the start of each trial, a start button appeared at the bottom center of the screen and positive and negative response options appeared in the top left and top right corner of the screen. The cursor was relocated to the center starting position (to ensure all trajectories start from the
same location) when participants clicked START and then the attitude object appeared. The attitude object remained on screen until participants had clicked on one of the two response buttons or after 4,000 ms. After this, the attitude object disappeared and a new trial started. The experiment was programmed such that if participants took more than 4,000 ms, a warning message appeared encouraging participants to start moving sooner (*Please start to move the mouse sooner - even if you are not sure yet how to respond*). There were two practice trials. The location of the positive and the negative response option was counterbalanced between participants. Half of the participants saw the positive response option on top left and the negative response option in the top right, and reversed for the other half. The experiment was programmed using the Mousetracker software package (Freeman & Ambady, 2010) which allowed us to record x and y coordinates of the computer mouse at a sampling rate of approximately 70 Hz, as well as response times.

Ambivalence. Ambivalence was assessed with two measures. First, *objective* ambivalence was examined using two items that assessed participants’ negative and positive evaluations of stimulus independently (Kaplan, 1972). The item read: “When you think about the positive (negative) aspects of this word, how positive (negative) do you feel?” on a scale from 1, not at all positive (negative) to 10, very positive (negative). We calculated objective ambivalence using the following formula \(\frac{(P + N)}{2} - |P - N| \) (Thompson, Zanna, & Griffin, 1995). Participants’ scores on the objective ambivalent scale could range from – 3.5 to 10, where higher scores reflect more ambivalence. Second, participants’ *subjective* ambivalence was measured with one item: “To what degree do you experience mixed thoughts and/or feelings regarding word?”. The 10-point answer scales ranged from “*eindeutige Gefühle*” (“one-sided feelings”) to “*gemischte Gefühle*” (“mixed feelings”) (cf. Priester & Petty, 1996). Participants completed these items for each of the words. After this
they provided demographic information and completed the German version of the brief self-control scale (Bertrams & Dickhäuser, 2009) for a different research project.

[STUDY C] Schneider, 2017 - 1

Participants and Design. 100 students (65 females, 34 males, 1 other, $M_{age} = 22.70$, $SD_{age} = 3.94$) participated for monetary reward. The experiment followed a 2 (valence: ambivalent vs. univalent) by 2 (presentation mode: word vs. picture) within-subjects design with maximum deviation (MD) as main dependent variable.

Stimuli. We used 18 pictures and 18 words relating to foods that were pre-tested for valence. There were 9 univalent pictures (spinach, apple, glass of milk, green smoothie, orange juice, selection of vegetables, muesli in a bowl, sliced dark bread, and a salad) and 9 ambivalent food pictures (hamburger, fries, gummy bears, glass of beer, curry sausage with sauce, chocolate, döner sandwich, cake, and a glass of cola): There were 9 univalent food words (spinach, apple, milk, smoothie, orange juice, vegetable, muesli, bread, and a salad) and 9 ambivalent food words (hamburger, fried, gummy bears, beer, curry sausage, chocolate, döner, cake, and a cola).

Evaluation task. The evaluation task was the same as in Schneider et al.(2015). At the start of each trial, a start button appeared at the bottom center of the screen and positive and negative response options appeared in the top left and top right corner of the screen. The cursor was relocated to the center starting position (to ensure all trajectories start from the same location) when participants clicked START and then the stimulus appeared. The stimulus remained on screen until participants had clicked on one of the two response buttons or after 2000 ms. After this, the attitude object disappeared and a new trial started. Pictures and words were presented block wise, with stimuli randomized within each block. There were two practice trials for each block. The location of the positive and the negative response option was counterbalanced between participants. Half of the participants saw the positive
response option on top left and the negative response option in the top right, and reversed for the other half. Furthermore, the order of the blocks was counterbalanced between participants. The experiment was programmed using the Mousetracker software package (Freeman & Ambady, 2010) which allowed us to record x and y coordinates of the computer mouse at a sampling rate of approximately 70 Hz, as well as response times.

Ambivalence. Ambivalence was assessed with two measures. First, objective ambivalence was examined using two items that assessed participants’ negative and positive evaluations of stimulus independently (Kaplan, 1972). The item read: “When you think about the positive (negative) aspects of this word, how positive (negative) do you feel?” on a scale from 1, not at all positive (negative) to 10, very positive (negative). We calculated objective ambivalence by submitting the positive and negative evaluations to the following formula \(((P + N) / 2) - |P - N|\) (Thompson et al., 1995). Participants’ scores on the objective ambivalent scale could range from –3.5 to 10, where higher scores reflect more ambivalence. Second, participants’ subjective ambivalence was measured with one item: “To what degree do you experience mixed thoughts and/or feelings regarding this food?”. The 10-point answer scales ranged from “no conflicting thoughts and feelings at all” to “maximum conflicting thoughts and feelings” (cf. Priester & Petty, 1996). Participants completed these items for each of the stimuli. After this they completed the brief self-control scale (Bertrams & Dickhäuser, 2009, \(\alpha = .82\)), and provided demographic information.

[STUDY D] Schneider, 2017 – 2

Participants and Design. 100 students (77 females, 22 males, 1 other, \(M_{age} = 22.15\), \(SD_{age} = 4.50\)) participated for course credit or monetary reward. The experiment followed a 2 (valence: ambivalent vs. univalent) by 2 (presentation mode: black and white vs. colored picture) within-subjects design with maximum deviation (MD) as main dependent variable.
Stimuli. We used the same picture stimuli from the Schneider, 2017 -1 to make two sets of stimuli. The first was the same as in Schneider, 2017 -1, 9 univalent and 9 ambivalent food items in color. The second was a copy of this set, but using a photo editing program, all images were edited to remove all color, coming to black and white pictures of 9 univalent and 9 ambivalent foods.

Evaluation Task. The evaluation task was the same as in Schneider, 2017 – 1 described above and we recorded the same mouse tracking indices.

Ambivalence. We assessed ambivalence in the same way as in Schneider, 2017- 1. Furthermore, for each stimulus participants indicated how vivid the stimulus was on a scale from 1 (not at all vivid) to 10 (very vivid). After this, participants completed the brief self-control scale (Bertrams & Dickhäuser, 2009, $\alpha = .77$) and provided demographic information.

[STUDY E] Hohnsbehn – Study 2

Participants. One hundred forty participants participated in the laboratory study. They were recruited mostly around the university building where the laboratory is located. As compensation, they received either 4 Euro or course credit. One participant refused compensation. Participants ranged in age from ($M_{age} = 23.22$ years, $SD_{age} = 4.23$ years) and 105 were female and 35 male. One hundred and thirty-seven participants reported to be students (98.56 %), forty-two of those were psychology students (30.66%).

Materials. The same morally ambivalent as well as univalent topics as in Study 1 were used as stimulus materials.

Objective and subjective ambivalence. Items to assess objective ambivalence as well as their calculations were identical to those of the pretest and Study 1 (see Pretest Materials section for details). Subjective ambivalence was measured with one item. It read “Concerning this topic, I experience conflicting thoughts and/or feelings.” Participants gave
their answer on a 10-point Likert scale ranging from 1 (not at all) to 10 (very much). Higher scores indicated higher subjective conflict.

Trait self-control. The Brief Trait Self-Control Scale (Bertrams & Dickhäuser, 2009; Cronbach’s $\alpha = .81$) was included to measure trait self-control (see Study 1 Materials section for details on scale descriptions and calculations).

Conflict variables. As mentioned above, an embodied measure was included to gain insight into the implicit unfolding of ambivalence. Accumulating research suggests that cognitions are deeply intertwined with motor systems (e.g., Decety & Jackson, 2004). During movement, motor systems receive continuous feedback from cognitive systems to ensure smooth execution of that movement to reach a certain goal (Goodale, Pelisson, & Prablanc, 1986). Thus, changes in bodily movement can be connected to changes in underlying cognitive processes (Freeman, Ambady, Rule, & Johnson, 2008; Hehman, Stolier, & Freeman, 2014). This realization opened up new ways of studying cognitive processes in real time and in a more direct way than was previously possible. For instance, and most relevant in the present context, recording the dynamics of hand movements can be informative of the unfolding of cognitive processes that occur at the same time as the movement (Freeman, Ambady, Midgley, & Holcomb, 2011; Freeman, Dale, & Farmer, 2011). The analysis of hand movement by recording people’s mouse trajectories during a computer categorization task has shed light on implicit cognitions in various lines of research, such as linguistic processing (Dale & Duran, 2011) and social categorization (Freeman et al., 2008).

Therefore, to assess ambivalence process on an implicit level through hand movements, participants performed a computerized categorization task. After instructions and two practice trials, morally ambivalent and univalent topics were presented randomly and each topic had to be categorized as either positive or negative. The initial mouse position was at the bottom center for each trial and topics was presented at the center of the screen. One of
the response options (positive, negative) was displayed in the upper left corner and the other in the upper right corner of the screen. It was counterbalanced between participants whether the response option positive was in the upper right or left corner and vice versa for the response option negative. During categorization, that is moving the mouse from the start position to the respective response option, mouse trajectories were recorded by MT Runner module from Mouse Tracker software package (Freeman & Ambady, 2010). To make sure that mouse trajectories actually reflected on-line implicit processes, participants were instructed to always answer as fast as possible and after 2000 ms of no mouse movement a message appeared on the screen reading “Please begin to move your mouse earlier- even if you are not yet sure how to respond.”

To be able to analyze, trajectory data was obtained in the standard MouseTracker coordinate space (bottom right: [1, 0]; top left: [-1, 1.5]) The computer mouse’s streaming x and y coordinates were sampled with a rate of 70 Hz for each trial. Also, to compare trajectories, each was remapped rightward. To compare trajectories of the different conditions, all trajectories were remapped horizontally to the non-chosen response option in the MT Analyzer module. Furthermore, a normalized time analysis was performed with 101 time steps and the respective x and y coordinates for each trajectory. Due to this type of processing, trajectories could be averaged.

Conflict measures extracted from this were maximum deviation, time of maximum deviation and response times. As mentioned above, maximum deviation refers to the point when the curvature of mouse trajectories towards the non-chosen response is greatest in contrast to an ideal trajectory, that is, the shortest possible way from mouse start position to the chosen response. As such, it is an indicator of maximum implicit conflict. The moment of maximum implicit conflict as well as reaction times were also recorded by the MouseTracker
software. Lastly, distributional analysis of maximum deviation was conducted with the MT Analyzer module of the MouseTracker software.

General ambivalence. For exploratory purposes, the General Ambivalence Scale was also included (Schneider, Novin, van Harreveld, & Genschow, under review.; Cronbach’s $\alpha = .90$). This scale is in the process of validation and consists of ten statements tapping in both generally experienced ambivalence (e.g. “I often feel torn between two sides of an issue” as well as in accompanying physical feelings of ambivalence (e.g. “Sometimes when I think about a topic, it almost feels like I am physically switching from side to side”). Participants stated their agreement on a 7-point Likert scale, ranging from 1 (*does not apply to me at all*) to 7 (*strongly applies to me*), with higher score indicating more general ambivalence. A mean score of general ambivalence was calculated by diving the sum of all scores by number of statements.

Procedure. First, participants were asked for their consent. After being seated in front of a computer, participants created a personal yet anonymous code and received a short introduction of the study. Then, they answered the Brief Trait Self-Control Scale. Afterwards, an experimenter started the categorization task for them. When they were finished, they were automatically forwarded to a questionnaire where they answered items of the explicit conflict measures (objective and subjective ambivalence), general ambivalence and demographic questions (gender, age, if they were a student and if yes what their field of study was). They could also enter comments concerning the study into a text box. Upon completion, participants were compensated with either 4 Euro

[STUDY G] Hohnsbehn – Study 1

Participants. One hundred and fifty-two participants (117 female, 34 male, 1 other) participated in the online study. The link to the study was distributed via mailing lists and
psychology student Facebook groups. As compensation, participants could either enter a lottery to win one of three 20 Euro gift certificates of their choosing or receive course credit. The mean age was 26.07 years ($SD = 6.58$).

Materials. A German online questionnaire was developed using the Qualtrics survey platform. As morally ambivalent topics headscarf ban, embryonic stem cell research, abortion, euthanasia, affirmative action, animal testing in medical research, unconditional basic income and refugees were selected in a pretest. Also, eight univalent topics were included: being in love (one word in German), happiness, vacation, sunshine, abuse, depression, disgust, and unhappiness. These topics are based on attitude objects already used by Schneider et al. (2015).

Objective and subjective ambivalence. Items of objective ambivalence and subjective ambivalence as well as their calculations were identical to the ones in the pretest. Cronbach’s α was .90 for the three items assessing subjective ambivalence.

Trait self-control. A German adaptation of the Brief Self-Control Scale (Bertrams & Dickhäuser, 2009) assessed trait self-control. This scale consists of 13 statements (e.g. “Pleasure and fun sometimes keep me from getting work done.”) Participants could indicate their agreement with each statement on a 5-point Likert scale, ranging from 1 (not at all) to 5 (very much); Cronbach’s $\alpha = .79$).

Procedure. First, participants were presented with an introduction of the study and the consent form. If given consent, participants were asked to generate a personal but anonymous code. This was included in the pretest as well to identify participants in this study who participated already in the pretest. Afterwards, participants received a short instruction identical to the one of the pretest. All 16 topics were randomly presented. Below each topic, the above described items of objective ambivalence, subjective ambivalence and subjective knowledge were displayed in this order. All items needed to be answered before going to the
page with the next topic. To prevent a sequence effect, the position of the German adaptation
of the Brief Self-Control Scale (Bertrams & Dickhäuser, 2009) was counterbalanced, so that
half of the participants answered it before rating the 16 topics and the other afterwards.

Finally, participants were asked about their gender, age, if they were a student and if
yes what their field of study is. Also, to achieve better data quality in the online study, they
answered a question about the perceived quality of their responses. This question read “If you
were the researcher running this study, would you include your data in data analysis or
should it be excluded due to you having been too distracted or inattentive?” Participants
could either answer “Yes, include” or “No, exclude”. Lastly, they could also enter comments
concerning the study into a text box. Having completed the demographic questions, they were
forwarded to a separate study where they could choose between course credit or entering the
gift-certificate lottery as a reward for participation and enter the appropriate information
(Name, Email address, student number).
APPENDIX B: SUPPLEMENTAL MATERIALS - ADDITIONAL ANALYSES

Below, we report additional analyses that we conducted during the review process of this paper at the request of the reviewers, in order to corroborate the findings from our original analyses.

Semi-partial correlations

Because the measures related to the magnitude and process hypotheses all capture ambivalence, albeit different aspects of ambivalence, they share a certain amount of variance. To ensure that the correlations we found with self-control do not exclusively reflect this shared variance, but also variance specific to the magnitude measures and process measures, we repeated the main analyses using semi-partial correlations. This approach constitutes a very conservative test and allowed us to examine whether the magnitude hypothesis and the process hypothesis are independent of each other.

Statistical analyses. To obtain the semi-partial correlations between self-control and the measures that are related to the magnitude hypothesis (objective ambivalence, subjective ambivalence, maximum deviation) while controlling for the measures that are related to the process hypothesis (maximum deviation time, response time), we proceeded as follows: First, we predicted the respective measure in a multiple linear regression with response time and maximum deviation time as predictors. The resulting residuals comprise the part of the variance of the magnitude measure that is not explained by the process measures (response time and maximum deviation time). By correlating the residuals with self-control, we obtained the relationship between self-control and the magnitude measure after removing any association with the process measures from the magnitude measure. For the semi-partial correlation with process measures, we proceeded similarly: First, we predicted the process measures in a multiple linear regression with objective ambivalence, subjective ambivalence and maximum deviation as predictors. Then, we correlated self-control with the resulting
residuals. If there are two independent mechanisms associated with trait self-control, we should find the same pattern of results as in the main analyses, which are based on conventional correlations.

In order to compute semi-partial correlations, we needed both self-report measures and mouse tracking measures. Since Studies F and G included self-report measures only, the analyses regarding semi-partial correlations were only conducted on Studies A to E. We used the same meta-analytic approach as described in the main text to aggregate the semi-partial correlations.

Magnitude hypothesis. After controlling for response time and maximum deviation time, we found a negative semi-partial correlation between self-control and objective ambivalence, $r = -.14, z = -2.42, p = .016, 95\% \text{ CI}[-.25, -.03]$, and self-control and subjective ambivalence, $r = -.15, z = -3.57, p < .001, 95\% \text{ CI}[-.23, -.07]$. The semi-partial correlation between self-control and maximum deviation was not significant, $r = .03, z = 0.51, p = .609, 95\% \text{ CI}[-.09, .15]$. These results suggest that independent of the shared variance within measures related to the process hypothesis, higher levels of self-control were associated with lower levels of ambivalence, reflecting the same pattern of results as found in the main analyses.

Process hypothesis. After controlling for objective ambivalence, subjective ambivalence and maximum deviation, we found a marginal negative semi-partial correlation between self-control and maximum deviation time, $r = -.07, z = -1.88, p = .061, 95\% \text{ CI}[-.15, .00]$, and a negative semi-partial correlation between self-control and response time, $r = -.09, z = -2.27, p = .023, 95\% \text{ CI}[-.16, -.01]$. Thus, self-control was associated with a faster resolution of conflict and a marginally earlier point of maximum conflict, reflecting the same patterns of results found in the main analyses.
Together, these additional analyses suggest that self-control is indeed associated with two independent mechanisms as described in the magnitude and process hypotheses.

BSCS Subscales

The Brief Self-Control Scale comprises two subscales: impulsivity and restraint (Maloney, Grawitch, & Barber, 2012). We repeated the analyses for these two subscales in order to investigate whether the effects we found were driven by one of these facets.

Magnitude hypothesis. Both impulsivity and restraint correlated negatively with objective ambivalence, \(r = -.13, z = -2.45, p = .014, 95\% \text{ CI}[-.22, -.03] \), and \(r = -.12, z = -2.27, p = .023, 95\% \text{ CI}[-.22, -.02] \), respectively. The subscales also correlated negatively with subjective ambivalence, \(r = -.13, z = -2.03, p = .042, 95\% \text{ CI}[-.25, .00] \) for impulsivity, and \(r = -.17, z = -5.42, p < .001, 95\% \text{ CI}[-.23, -.11] \) for restraint. Finally, the correlations of impulsivity and restraint with maximum deviation were not significant, \(r = .03, z = 0.59, p = .557, 95\% \text{ CI}[-.08, .14] \), and \(r = .08, z = 1.33, p = .183, 95\% \text{ CI}[-.04, .19] \), respectively. These results suggest that the effects of self-control related to the magnitude hypothesis are not driven by a particular subscale.

Process hypothesis. Both impulsivity and restraint correlated equally high with maximum deviation time. However, only the correlation between impulsivity and maximum deviation time reached the level of statistical significance, \(r = -.10, z = -2.45, p = .014, 95\% \text{ CI}[-.17, -.02] \), because the estimates of the correlation between restraint and maximum deviation time were more variable, leading to a larger confidence interval of the overall effect size which included zero, \(r = -.10, z = -1.54, p = .124, 95\% \text{ CI}[-.23, .03] \). Furthermore, there was a significant negative correlation between impulsivity and response time, \(r = -.11, z = -2.77, p = .006, 95\% \text{ CI}[-.18, -.03] \), and a marginal negative correlation between restraint and response time, \(r = -.09, z = -1.74, p = .083, 95\% \text{ CI}[-.19, .01] \). Again, the sizes of both correlations were very similar, but the confidence interval of the correlation between restraint
and response time was larger, indicating more variability in the correlations of the individual studies.

To sum up, these results suggest that the effects we found for self-control were not driven more strongly by either of the two subscales.